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ABSTRACT 
In this study, a new analytical model for temperature 

distribution inside anisotropic rectangular plates subjected to 

multiple cold/hotspots on the top and bottom surfaces is 

presented. All lateral faces are assumed to be insulated. 2-D 

Fourier expansion technique is used to transform the discrete 

Neumann boundary conditions on the top and bottom into a 

continuous form. The solution is first justified for the case with 

single hotspots on each side and then using the superposition 

principle, it is extended into the general form to cover multi-

hotspot cases. The model is validated by numerical simulation 

data and a perfect agreement is observed. Thermal spreading 

resistance is defined for the anisotropic plate and a parametric 

study for optimization purpose is performed. The influence of 

anisotropy on the resistance is discussed in detail and critical 

values are evaluated. 

 
INTRODUCTION 

Recently, graphite-based anisotropic materials have 

received a significant attention due to their exceptional thermo-

physical properties [1–3]. Graphite-based materials are one of 

the well-known anisotropic materials which have in-plane 

thermal conductivities, up to 1500 W/m.K, and through-plane 

thermal conductivities around 2 W/m.K.[3–6]. This property is 

mainly due to their especial atomic structure. They are 

generally, a stack of Graphene flakes piled upon each other 

(Fig. 1). The interlayer cohesive energy of Graphene flakes 

which is due to the van der Waals atomic attraction is much 

stronger than intralayer covalent bonding [7]. This structural 

feature causes large anisotropy in graphite which makes it an 

ideal candidate for heat spreaders where higher heat transfer is 

desired in in-plane than in the through-plane direction. Heat 

spreaders are one of the main components in any cooling 

systems of electronic, power electronic, photonics, and telecom 

devices. They reduce heat flux at hotspots by spreading it into 

larger area. [8], [9]. The spreading (or constriction) resistance 

causes an extra resistance against the heat flow which can be 

minimized by properly designing the spreader. 

 

 

Figure 1. SEM image of compressed expanded graphite 

A number of relevant analytical and numerical studies can 

be found on this topic in the literature. Most of the existing 

works were focused only on isotropic materials. Kokkas [10] 

obtained a general quasi-equilibrium Fourier/Laplace transform 

solution for a rectangular slab with heat sources on top and 

convective cooling on the bottom. Kadambi and Abuaf [11] 

developed an analytical solution to axisymmetric as well as 3-D 

steady-state and transient heat conduction equations for a 

convectively cooled slab with a heat source at the center of the 

top surface. Yovanovich et al. [8] reported a general expression 

for spreading resistance of a heat source centered on a 

rectangular double layer plate with either conduction or 

convection on the bottom surface. They also presented closed-

form spreading resistance relationships for several special 

cases. Culham et al. [12] reported a more general solution to 

the 3-D Laplace equation for the rectangular plate with centered 

heat source on the top and edge cooling instead of insulation on 

the side walls. Later, Muzychka et al. [13] extended Culham et 

al. work and solved the same problem in cylindrical 

coordinates for a circular slab. In another study, they [14] 

reported a general solution for thermal spreading resistances of 

convectively cooled rectangular flux channel with eccentric 

heat sources on top. Using a superposition technique, 
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Muzychka [15] generalized the solution for problems with 

multi-heat sources on the top. He introduced the “influence 

coefficient”, which defines the contribution of each heat source 

on the temperature rise of other hotspots. Employing an 

asymptotic approach, Karmalkar et al. [9] proposed a closed-

form expression for spreading resistance for all rectangular and 

circular hotspot contact conditions. Recently, Dan et al. [16] 

presented a solution to temperature distribution inside a multi-

layered isotropic rectangular tube with discrete isothermal 

hotspots on both top and bottom surfaces. To overcome the 

complexity of the mixed boundary conditions they employed an 

approximate technique to convert this boundary condition into 

a Neumann boundary condition.  

There are only a few analytic studies on 3-D conduction 

heat transfer in anisotropic materials subjected to discrete heat 

flux in the literature. Ying and Toh [17] developed an 

anisotropic spreading resistance model in cylindrical 

coordinates for a disc with centric heat source on the top and 

convective cooling on the bottom. Muzychka et al. [18] brought 

a summary of all the previous studies for isotropic materials 

and by transforming the boundary conditions and governing 

equations for anisotropic systems, obtained a new solution for 

convectively cooled rectangular flux channels as well as 

circular flux tubes with centralized heat source on the top. 

In the present study, a new general solution to 3-D 

conduction heat transfer in anisotropic rectangular plate 

(
x y zk k k  ) with multiple heat sources and heat sinks on 

the top and bottom surfaces is  presented. The present model is 

validated by an independent numerical study. It is found that in 

electronic devices where heat is required to travel in-plane from 

the hotspot to get to the sink, which is the case of notebooks 

and cell phones, properly des igned anisotropic spreaders 

perform much better than conventional isotropic metallic ones.  

NOMENCLATURE 
 
A,B,C [-] Solution coefficients 

H [m] Plate thickness 
L [m] Plate length 
M [-] Number of sources/sinks on the top surface 

N [-] Number of sources/sinks on the bottom surface 
Q [W] Total heat flow 
Qref [W] Reference heat flow 
T [K] Temperature  

T0 [K] Reference temperature 
W [m] Plate width 
X [m] x coordinate of source/sink’s center 
Y [m] y coordinate of source/sink’s center 

a [m] Length of source/sink 
b [m] Width of source/sink 
s [-] Fourier series coefficient 
k [W/mK] Thermal conductivity 

m,n [-] Term number in series solution 
q [W/m

2
] Heat flux 

 
Special characters 
β, δ, λ [-] Eigenvalue (x-y-z direction) 
ε [-] Width to length aspect ratio of the plate 
εH [-] Height to length aspect ratio of the plate 
κ [-] Dimensionless thermal conductivity 

 
Subscripts 

i  Number of sources/sinks on each surface 
source  Pertaining to heat sources 
sink  Pertaining to heat sinks 
 

Superscripts 
*  Specifies dimensionless parameter 
t  Top surface 

b  Bottom surface 

 

 

MODEL DEVELOPMENT 

An anisotropic rectangular plate of L×W with thickness of 

H (Fig. 2.a) is considered for the following two scenarios: 

i) Subjected to a single rectangular source and sink 

arbitrary-located on the both top and bottom surface and,  

ii) More generally, subjected to ‘M’ and ‘N’ arbitrarily 

located sinks and sources on the top and bottom surface. 

As boundary conditions, it is assumed that the lateral faces 

of the plate are insulated, i.e., no heat transfer through the side 

walls. All the top and bottom surfaces except at the spots 

(refers to either hot or cold-spots) are also considered to be 

insulated. Spots have arbitrary heat flux,   (i is the number 

assigned to spots), positive values for heat sources and negative 

for sinks, which are functions of x and y. Each spot is centrally 

positioned at x coordinate of X and y coordinate of Y with 

length and width of a and b, respectively, as shown in Fig. 2.b. 

The objectives are to: i) find the temperature distribution inside 

the plate with any arbitrarily arrangement of spots on the top 

and bottom surfaces analytically, and ii) define corresponding 

spreading resistance. 

 

 

Figure 2 Schematic of an anisotropic rectangular spreader 

with multiple hotspots on the top and bottom surfaces (a) Size 

and location of the hotspots (b) 

General solution 

Dimensionless parameters are defined as follows and the 

governing equation and boundary condit ions are expressed 

accordingly. 
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where  is an arbitrary reference heat flux and   is a reference 

temperature. Using the parameters in Eq. (1), the dimensionless 

form of the governing equation and the boundary conditions 

are: 
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Using a separation of variable technique, Eq. (2) has the 

general solution in the form of below: 

** 2 2 *
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In witch, λ, δ and C(λ,δ) are unknown coefficients that should be 

defined through applying the boundary conditions. Applying 

the first boundary conditions, Eq. (3), and expanding the 

solution into trigonometric form results: 
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where λ, δ and β are eigenvalues in the form of below: 

2 2,    ,   
x y

m n 
    

  
     (7) 

In the Eq. (6) ‘A’s, ‘B’s are coefficients which should be 

defined by applying the boundary conditions on the top and 

bottom surfaces. As it is shown in Eq. (4), the Neumann 

boundary conditions on these two surfaces have a discrete form 

which cannot directly be applied. To apply these boundary 

conditions in the solution, Eq. (6), a 2-D Fourier expansion 

technique is used. Using this technique, the temperature 

distribution is derived for single and multi-hotspots cases.  

i) Single heat source and heat sink  

For a plate with one heat source on the top surface 

(subscript t) and one heat sink on the bottom (subscript b), the 

coefficients of the solution, Eq. (9), are as follows: 
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In which the auxiliary coefficients, obtained from Furrier 

expansion, are: 
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From Eq. (8) one can see that the conservation of energy in 

the plate is automatically satisfied.  

ii) Multiple sources/sinks on the top and bottom surface 

Since conduction heat transfer in a solid is a linear process, 

superposition principle is applicable. As such, for cases with 
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multiple sources/sinks on each of the top and bottom surfaces, 

temperature distribution can be readily obtained by superposing 

the single source results. Using this approach, the solution can 

be generalized for rectangular plates with ‘M’ and ‘N’ number 

of sources/sinks on the top and bottom surfaces, respectively. 

As a result, the solution, Eq. (6), and the coefficients, Eqs. (8-

14), remain unchanged, however; the auxiliary coefficients take 

the more general form of below: 
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Using the above auxiliary coefficients, the temperature 

distribution inside an anisotropic plate can be found for any 

number and arrangement of heat sources and sinks. 

Special case: in a particular case, in which each spot has a 

constant heat flux qi, the general auxiliary coefficients take the 

following simplified form: 

* * *

1

   

00

t
M or N

i i

r b

i

o

i

q as b


    (23) 

*
*

*
*

    * * * 2
0

1
2

1
sin( )

i
i

i
i

aM or N
X

t or b

m i i x a
Xix

s q b x






   (24) 

*
*

*
*

    * * * 2
0

1
2

1
sin( )

i
i

i
i

bM or N
Y

t or b

n i i y b
Yiy

s q a y






   (25) 

* *
* *

* *
* *

    * * *2 2

1
2 2

1
sin( ) sin( )

i i
i i

i i
i i

a bM or N
X Y

t or b

mn i x ya b
X Yix y

s q x y 
 

 

 

   (26)

   

Thermal resistance 

To define thermal resistance two temperatures and the 

amount of heat flow is required [13–16]. In this study, the 

difference between average temperatures over the heat sources 

and heat sinks is considered as the temperature difference 

required for defining the thermal resistance. Total heat flow 

also can be derived by integrating the heat flux over the heat 

sources or heat sinks domain. As such, the spreading resistance 

can be defined as: 
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For the case of constant heat fluxes, Q
*
 can simply be 

calculated by summation of dimensionless heat fluxes 

multiplied by their dimensionless domain area. 

 

RESULTS AND DISSCUSION  
Model validation 

To validate the present model, an anisotropic rectangular 

Pyrolytic Graphite Sheet (PGS) with an arbitrary arrangement 

of four spots, i.e., two sources on the top surface and two sinks 

on the bottom is assumed, see Fig. 3. The chosen PGS has 

through-plane thermal conductivity of 4W/m.K and in-plane 

one of 800W/m.K [4–6]. 

The numerical analysis is performed using COMSOL 

Multiphysics 4.2a [19]. A sensitivity study on the grid size is 

performed for two different levels of extra and extremely fine 

mesh sizes with 7.6×104 and 4.2×105 elements, respectively. 

Less than 0.1 percent relative difference for local temperature 

between the two cases is observed. The computation time for 

the extra fine mesh size using a typical Pentium Dual-Core PC 

is around 20 seconds. 

 
Figure  1. Cut-lines’ position inside the rectangular plate for 

comparison between the analytical and numerical results  

To compare the results quantitatively, temperatures along 

three different imaginary lines in three different directions, 

labeled in Fig. 3, are plotted in Fig. 4 for both analytical and 

numerical results. For this specific example, the characteristic 

length, L, and   are equal to 0.1m and 1kW, respectively. 

Thermal conductivity in z-direction is assumed to be 4W/m.K. 

The thermo-physical parameters are listed in Table 1. 
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Table 1. Thermo-physical characteristics of the plate and the 

spots in Fig. 3 used in the numerical analysis. 

Plate 

dimensions 

Plate 

material 

Source 

1 

Source 

2 
Sink 1 Sink 2 

L=1cm kz=4W/mk Qref =1kW 
ε=1 

εH=0.2 

 

 

κx=0.25 

κy=0.50 

 

 

a*=0.2 

b*=0.2 

X*=0.5 
Y*=0.5 

q*=1 

a*=0.2 

b*=0.2 

X*=0.5 
Y*=0.8 

q*=1 

a*=0.2 

b*=0.2 

X*=0.5 
Y*=0.5 

q*=1 

a*=0.2 

b*=0.2 

X*=0.2 
Y*=0.9 

q*=1 

 

 
Figure  2. Comparison between the present analytical model 

and numerical results for temperature along three different cut-

lines. The hotspots arrangement of Fig. 3 was used. 

 

As shown in Fig. 4, there is an excellent agreement 

between the analytical model results and the numerical 

simulation. A sensitivity analysis on the number of eigenvalue 

terms in the series solution is performed. Increasing the number 

of terms in the series from 100 to 400 will not change the 

solution considerably (less than 0.1%). 

 

Parametric study 

A parametric study is performed to investigate the effects 

of anisotropy on thermal performance of heat spreaders. This 

parametric study is conducted for spreaders  with single heat 

source and heat sink, each of them placed on one face of the 

plate. The behavior of the multi-hotspot geometries can be 

obtained by superposing the effects caused by each single spot. 

To cover a wide range of source/sink relative position and 

see the effect of anisotropy, two different arrangements for 

source and sink are chosen to represent two extreme cases, as 

shown in Fig. 5. In the first case, a heat source on the top and a 

heat sink on the bottom are centrally aligned and positioned at 

the center of the plate. This arrangement (Case I) represents the 

lowest thermal resistance due to the minimum distance between 

the source and the sink. In Case II, the heat source on the top 

surface and the heat sink on the bottom surface are positioned 

at two opposite corners; thus representing the highest thermal 

resistance. Heat sources and heat sinks are assumed to be 

isoflux. 

 
Figure  3. Two different arrangements of hotspots for 

parametric study (left: Case I, Right: Case II). 

To study the anisotropy of materials, resistance of square 

plate with two different arrangements of source and sink, Case I 

and Case II, Fig. 5, is plotted versus through-plane to in-plane 

conductivity ratios for four different plate thicknesses in Figs. 6 

and 8. Conductivity ratio (k xy/k z) ranges from 0.01 to 100. The 

source and sink are identical squares with arbitrary side length 

of 0.2L. The plate is also set to be square (ε=W/L=1). The 

effect of spots size will be investigated separately later. For 

better depiction, the graphs are plotted in logarithmic scale. 

 
Figure  4. Resistance versus through-plane to in-plane 

conductivity ratio for four thicknesses (Case I) 

Figure 6 shows, in a plate with two centrally-aligned spots 

on the top and bottom (Case I), as the ratio of the in-plane to 

through-plane conductivity increases, the thermal resistance 

decreases. This trend can be explained as follows: as the in-

plane conductivity increases, the temperature becomes uniform 

over the surface much faster due to less in-plane resistance 

against the heat flow, so the heat spreading/cons triction takes 

place easier with less temperature drop.  

For the arrangement of Case I, heat transfer improvement 

due to increasing the in-plane conductivity is directly related to 

the size of the spots. As shown in Fig. 7, for smaller spot area, 
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the resistance decrease occurs more significantly when the in-

plane thermal conductivity increases. This is due to the fact that 

the spreading/constriction resistance becomes more 

considerable with smaller relative spot sizes. Thus, in such 

spreaders, higher in-plane thermal conductivity results in much 

better thermal performance improvement of the heat spreader. 

In other words, for smaller spots it is thermally more efficient 

to use anisotropic material for spreader. At the limit where the 

spot’s sizes are as big as the plate surface, i.e., 1-D heat 

conduction, no spreading or constriction exists thus changing 

the in-plane conductivity has no effect on the plate resistance. 

 
Figure  5. Resistance versus through-plane to in-plane 

conductivity ratio for four hotspot size (Case I) 

For the second arrangement (Case II), anisotropy of the 

material has a more pronounced effect on the thermal 

performance of the spreader. Figure 8 presents the resistance 

variation of the plate as the in-plane to through-plane 

conductivity ratio changes from 0.01 to 100. It shows, for all 

the thicknesses, thermal resistance decreases as the in-plane 

conductivity increases. For thinner plates, this variation is more 

than thicker ones.  For thin plates the heat coming from the heat 

source at one corner has to pass through the smaller cross -

section than the thicker plates to reach the heat sink at the other 

corner, resulting in higher resistance for thinner plates. But as 

the in-plane thermal conductivity increases, the effect of in-

plane resistance becomes less important and the thickness 

becomes the controlling parameter. This phenomenon is clearly 

shown in Fig. 8, where two curves of different thicknesses 

intersect. These intersection points demarcate the critical 

conductivity ratios for the two corresponding thicknesses 

before which the in-plane resistance is dominant, thus thinner 

plate has larger resistance. However, beyond these points, 

through-plane heat transfer plays a more important role, and the 

thicker plate presents more resistance.  

 
Figure  6. Resistance versus through-plane to in-plane 

conductivity ratio for four thicknesses (Case II) 

The important points can be summarized as, 

 Regardless of spots arrangement and plate thickness, 

increasing the in-plane thermal conductivity always 

improve the heat transfer. 

 As the relative eccentricity of spots on the top and 

bottom surface increases, the anisotropy effect 

becomes more prominent. 

 As the relative size of spots becomes smaller, increasing 

in-plane thermal conductivity has a more pronounced 

effect on the thermal performance of the plate. 

 Changing anisotropy in thinner plates creates more 

resistance variation compared to thicker ones. 

 In 1-D heat transfer, resistance is only a function of 

through-plane conductivity and the plate material’s 

anisotropy has no effect on its resistance. 

SUMMARY  

A new analytical model was developed for temperature 

distribution inside anisotropic rectangular plates subjected to 

multiple cold/hotspots on the top and bottom surfaces. 2-D 

Fourier expansion technique was used to transform the discrete 

Neumann boundary conditions on the top and bottom into a 

continuous form. The solution was first developed for the case 

with arbitrary single spot on each side and then using the 

superposition principle, it was extended to the general form to 

cover multi-spot cases. The model was validated by an 

independent numerical simulation data and a perfect agreement 

was observed. Thermal spreading resistance then was defined 

for the plate and a parametric study for optimization purpose 

was performed. The effects of anisotropy on the resistance were 

discussed in detail.  

1465



    

REFERENCES 

[1] W. Kuo, T. Wu, H. Lu, and T. Lo, “Microstructures and 
Mechanical Properties of Nano-Flake Graphite Composites,” in 16th 

International Conference on Composite Materials, 2007. 

[2] L. Dai, “Functionalization of Graphene for Efficient Energy 

Conversion and Storage,” Accounts of chemical research, vol. 46, no. 

1, pp. 31–42, 2013. 

[3] D. D. L. Chung and Y. Takizawa, “Performance of Isotropic 
and Anisotropic Heat Spreaders,” Journal of Electronic Materials, vol. 

41, no. 9, pp. 2580–2587, Jun. 2012. 

[4] J. Norley, J. Tzeng, and G. Getz, “The Development of a 
Natural Graphite Heat-Spreader,” in Seventeenth IEEE SEMI, 2001, 

pp. 107–110. 

[5] Y. Taira, S. Kohara, and K. Sueoka, “Performance 

improvement of stacked graphite sheets for cooling applications,” 

2008 58th Electronic Components and Technology Conference, pp. 

760–764, May 2008. 

[6] Panasonic Electronic Devices Co., “Pyrolitic Graphite Sheet.” 
[Online]. Available: 

http://www.panasonic.com/industrial/demo/en_demo.asp. 

[7] K. F. Kelly and W. E. Billups, “Synthesis of soluble graphite 
and graphene.,” Accounts of chemical research, vol. 46, no. 1, pp. 4–

13, Jan. 2013. 

[8] M. M. Yovanovich, Y. S. Muzychka, and J. R. Culham, 

“Spreading Resistance of Isoflux Rectangles and Strips on Compound 

Flux Channel,” Journal of Thermophysics and Heat Transfer, vol. 13, 

no. 4, pp. 495–500, 1999. 

[9] S. Karmalkar, P. V. Mohan, and B. P. Kumar, “A unified 
compact model of electrical and thermal 3-D spreading resistance 

between eccentric rectangular and circular contacts,” IEEE Electron 

Device Letters, vol. 26, no. 12, pp. 909–912, Dec. 2005. 

[10] A. G. Kokkas, “Thermal Analysis of Multiple-Layer 

Structures,” IEEE Transaction on Electron Devices, vol. ED-21, no. 

11, pp. 674–681, 1974. 

[11] V. Kadambi and N. Abuaf, “An Analysis of the Thermal 

Response of Power Chip Packages,” IEEE Transaction on Electron 
Devices, vol. ED-32, no. 6, pp. 1024–1033, 1985. 

[12] J. R. Culham, M. M. Yovanovich, and T. F. Lemczyk, 
“Thermal Characterization of Electronic Packages Using a Three-

Dimensional Fourier Series Solution,” Journal of Electronic 

Packaging, vol. 122, no. 3, p. 233, 2000. 

[13] Y. S. Muzychka, J. R. Culham, and M. M. Yovanovich, 

“Thermal Spreading Resistances In Rectangular Flux Channels Part II 

- Edge Cooling,” in 36th AIAA Thermophysics Conference, 2003. 

[14] Y. S. Muzychka, J. R. Culham, and M. M. Yovanovich, 

“Thermal Spreading Resistance of Eccentric Heat Sources on 
Rectangular Flux Channels,” Journal of Electronic Packaging, vol. 

125, no. 2, pp. 178–185, 2003. 

[15] Y. S. Muzychka, “Influence Coefficient Method for 
Calculating Discrete Heat Source Temperature on Finite Convectively 

Cooled Substrates,” IEEE Transactions on Components and 

Packaging Technologies, vol. 29, no. 3, pp. 636–643, Sep. 2006. 

[16] B. Dan, J. F. Geer, and B. G. Sammakia, “Heat Conduction in 

a Rectangular Tube With Eccentric Hot Spots,” Journal of Thermal 

Science and Engineering Applications, vol. 3, no. 4, p. 041002, 2011. 

[17] T. M. Ying and K. C. Toh, “A heat spreading resistance model 

for anisotropic thermal conductivity materials in electronic 
packaging,” in The Seventh Intersociety Conference on Thermal and 

Thermomechanical Phenomena in Electronic Systems (Cat. 

No.00CH37069), 2000, pp. 314–321. 

[18] Y. S. Muzychka, M. M. Yovanovich, and J. R. Culham, 
“Thermal Spreading Resistance in Compound and Orthotropic 

Systems,” Journal of Thermophysics and Heat Transfer, vol. 18, no. 1, 

pp. 45–51, Jan. 2004.  

 

1466


